Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper tackles the challenging problem of real-world data self-supervised representation learning from two modalities: fetal ultrasound (US) video and the corresponding speech acquired when a sonographer performs a pregnancy scan. We propose to transfer knowledge between the different modalities, even though the sonographer's speech and the US video may not be semantically correlated. We design a network architecture capable of learning useful representations such as of anatomical features and structures while recognising the correlation between an US video scan and the sonographer's speech. We introduce dual representation learning from US video and audio, which consists of two concepts: Multi-Modal Contrastive Learning and Multi-Modal Similarity Learning, in a latent feature space. Experiments show that the proposed architecture learns powerful representations and transfers well for two downstream tasks. Furthermore, we experiment with two different datasets for pretraining which differ in size and length of video clips (as well as sonographer speech) to show that the quality of the sonographer's speech plays an important role in the final performance.

Original publication

DOI

10.1109/ISBI56570.2024.10635693

Type

Conference paper

Publication Date

01/01/2024