Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Black Carbon (BC) aerosols are known to be important for the Earth’s climate, yet their exact role to the changing of the Earth’s climate and Arctic amplification remains unclear. An accurate description of the BC life cycle in general circulation models (GCMs) can help reduce the uncertainties due to BC aerosols and specify BC's role in the Arctic.In this study, several GCMs (ECHAM6.3-HAM2.3, ECHAM6.3-HAM2.3-P3, ECHAM6.3-HAM2.3-SALSA2 and UKESM1.0) are compared in terms of their representation of BC mass in the Arctic within the AeroCom project GCM Trajectory. A novel Lagrangian framework is employed to examine the history of air masses reaching the observational station Zeppelin, Svalbard. Therfore the removal processes were analysed along the trajectory and the GCMs compared with each other. The analysis emphasises the impact of remote emissions on local BC concentrations in the Arctic, indicating a longer BC lifetime compared to the global average. This underlines the importance of dry and wet scavenging parametrisations in the GCMs.   

Original publication





Publication Date