Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Detecting and quantifying changes in growth rates of infectious diseases is vital to informing public health strategy and can inform policymakers' rationale for implementing or continuing interventions aimed at reducing impact. Substantial changes in SARS-CoV-2 prevalence with emergence of variants provides opportunity to investigate different methods to do this. We included PCR results from all participants in the UK's COVID-19 Infection Survey between August 2020-June 2022. Change-points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalised additive models (GAMs). Consistency between methods and timeliness of detection were compared. Of 8,799,079 visits, 147,278 (1.7%) were PCR-positive. Change-points associated with emergence of major variants were estimated to occur a median 4 days earlier (IQR 0-8) in GAMs versus ISR. When estimating recent change-points using successive data periods, four change-points (4/96) identified by GAMs were not found when adding later data or by ISR. Change-points were detected 3-5 weeks after they occurred in both methods but could be detected earlier within specific subgroups. Change-points in growth rates of SARS-CoV-2 can be detected in near real-time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories both methods could be run in parallel.

Original publication

DOI

10.1093/aje/kwae091

Type

Journal article

Journal

Am J Epidemiol

Publication Date

29/05/2024

Keywords

Change-point detection, Community surveillance, Real-time monitoring, SARS-CoV-2 infection