Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We place an Indian Buffet process (IBP) prior over the structure of a Bayesian Neural Network (BNN), thus allowing the complexity of the BNN to increase and decrease automatically. We further extend this model such that the prior on the structure of each hidden layer is shared globally across all layers, using a Hierarchical-IBP (H-IBP). We apply this model to the problem of resource allocation in Continual Learning (CL) where new tasks occur and the network requires extra resources. Our model uses online variational inference with reparameterisation of the Bernoulli and Beta distributions, which constitute the IBP and H-IBP priors. As we automatically learn the number of weights in each layer of the BNN, overfitting and underfitting problems are largely overcome. We show empirically that our approach offers a competitive edge over existing methods in CL.

Type

Conference paper

Publication Date

01/01/2021

Volume

161

Pages

749 - 759