Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Lack of evidence-based information regarding potential biological risks can result in inappropriate or excessive biosafety and biosecurity risk-reduction strategies. This can cause unnecessary damage and loss to the physical facilities, physical and psychological well-being of laboratory staff, and community trust. A technical working group from the World Organization for Animal Health (WOAH, formerly OIE), World Health Organization (WHO), and Chatham House collaborated on the Biosafety Research Roadmap (BRM) project. The goal of the BRM is the sustainable implementation of evidence-based biorisk management of laboratory activities, particularly in low-resource settings, and the identification of gaps in the current biosafety and biosecurity knowledge base. METHODS: A literature search was conducted for the basis of laboratory design and practices for four selected high-priority subgroups of pathogenic agents. Potential gaps in biosafety were focused on five main sections, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Categories representing miscellaneous, respiratory, bioterrorism/zoonotic, and viral hemorrhagic fever pathogens were created within each group were selected for review. RESULTS: Information sheets on the pathogens were developed. Critical gaps in the evidence base for safe sustainable biorisk management were identified. CONCLUSION: The gap analysis identified areas of applied biosafety research required to support the safety, and the sustainability, of global research programs. Improving the data available for biorisk management decisions for research with high-priority pathogens will contribute significantly to the improvement and development of appropriate and necessary biosafety, biocontainment and biosecurity strategies for each agent.

Original publication

DOI

10.1089/apb.2022.0040

Type

Journal article

Journal

Appl Biosaf

Publication Date

01/06/2023

Volume

28

Pages

64 - 71

Keywords

biosafety gap, bioterrorism/zoonotic pathogens, miscellaneous pathogens, respiratory pathogens, viral hemorrhagic fevers