Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper develops a multi-frame image super-resolution approach from a Bayesian view-point by marginalizing over the unknown registration parameters relating the set of input low-resolution views. In Tipping and Bishop's Bayesian image super-resolution approach [16], the marginalization was over the super-resolution image, necessitating the use of an unfavorable image prior. By integrating over the registration parameters rather than the high-resolution image, our method allows for more realistic prior distributions, and also reduces the dimension of the integral considerably, removing the main computational bottleneck of the other algorithm. In addition to the motion model used by Tipping and Bishop, illumination components are introduced into the generative model, allowing us to handle changes in lighting as well as motion. We show results on real and synthetic datasets to illustrate the efficacy of this approach.

Type

Conference paper

Publication Date

01/01/2006

Pages

1089 - 1096