Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nε-Methylation of lysine residues in histones plays an essential role in the regulation of eukaryotic transcription. The 'highest' methylation mark, Nε-trimethyllysine, is specifically recognised by Nε-trimethyllysine binding 'reader' domains, and undergoes demethylation, as catalysed by 2-oxoglutarate dependent JmjC oxygenases. We report studies on the recognition of the closest positively charged Nε-trimethyllysine analogue, i.e. its trimethylphosphonium derivative (KPme3), by Nε-trimethyllysine histone binding proteins and Nε-trimethyllysine demethylases. Calorimetric and computational studies with histone binding proteins reveal that H3KP4me3 binds more tightly than the natural H3K4me3 substrate, though the relative differences in binding affinity vary. Studies with JmjC demethylases show that some, but not all, of them can accept the phosphonium analogue of their natural substrates and that the methylation state selectivity can be changed by substitution of nitrogen for phosphorus. The combined results reveal that very subtle changes, e.g. substitution of nitrogen for phosphorus, can substantially affect interactions between ligand and reader domains / demethylases, knowledge that we hope will inspire the development of highly selective small molecules modulating their activity.

Original publication




Journal article


Commun Chem

Publication Date