Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Adenovirus vectors have become an important class of vaccines with the recent approval of Ebola and COVID-19 products. In-process quality attribute data collected during Adenovirus vector manufacturing has focused on particle concentration and infectivity ratios (based on viral genome: cell-based infectivity), and data suggest only a fraction of viral particles present in the final vaccine product are efficacious. To better understand this product heterogeneity, lab-scale preparations of two Adenovirus viral vectors, (Chimpanzee adenovirus (ChAdOx1) and Human adenovirus Type 5 (Ad5), were studied using transmission electron microscopy (TEM). Different adenovirus morphologies were characterized, and the proportion of empty and full viral particles were quantified. These proportions showed a qualitative correlation with the sample's infectivity values. Liquid chromatography-mass spectrometry (LC-MS) peptide mapping was used to identify key adenovirus proteins involved in viral maturation. Using peptide abundance analysis, a ∼5-fold change in L1 52/55k abundance was observed between low-(empty) and high-density (full) fractions taken from CsCl ultracentrifugation preparations of ChAdOx1 virus. The L1 52/55k viral protein is associated with DNA packaging and is cleaved during viral maturation, so it may be a marker for infective particles. TEM and LC-MS peptide mapping are promising higher-resolution analytical characterization tools to help differentiate between relative proportions of empty, non-infectious, and infectious viral particles as part of Adenovirus vector in-process monitoring, and these results are an encouraging initial step to better differentiate between the different product-related impurities.

Original publication




Journal article


J Pharm Sci

Publication Date





974 - 984


Adenovirus-based vaccine, Analytical characterization, Critical quality attributes, In-process testing, Mass spectrometry, Transmission electron microscopy, Humans, Capsid, COVID-19, Viral Proteins, Adenoviridae, Adenoviruses, Human, Genetic Vectors