Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cloud reflectivity is sensitive to atmospheric aerosol concentrations because aerosols provide the condensation nuclei on which water condenses1. Increased aerosol concentrations due to human activity affect droplet number concentration, liquid water and cloud fraction2, but these changes are subject to large uncertainties3. Ship tracks, long lines of polluted clouds that are visible in satellite images, are one of the main tools for quantifying aerosol-cloud interactions4. However, only a small fraction of the clouds polluted by shipping show ship tracks5,6. Here we show that even when no ship tracks are visible in satellite images, aerosol emissions change cloud properties substantially. We develop a new method to quantify the effect of shipping on all clouds, showing a cloud droplet number increase and a more positive liquid water response when there are no visible tracks. We directly detect shipping-induced cloud property changes in the trade cumulus regions of the Atlantic, which are known to display almost no visible tracks. Our results indicate that previous studies of ship tracks were suffering from selection biases by focusing only on visible tracks from satellite imagery. The strong liquid water path response we find translates to a larger aerosol cooling effect on the climate, potentially masking a higher climate sensitivity than observed temperature trends would otherwise suggest.

Original publication

DOI

10.1038/s41586-022-05122-0

Type

Journal article

Journal

Nature

Publication Date

10/2022

Volume

610

Pages

101 - 106