Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In electronic health records (EHRs), irregular time-series (ITS) occur naturally due to patient health dynamics, reflected by irregular hospital visits, diseases/conditions and the necessity to measure different vitals signs at each visit etc. ITS present challenges in training machine learning algorithms which mostly are built on assumption of coherent fixed dimensional feature space. In this paper, we propose a novel COntinuous patient state PERceiver model, called COPER, to cope with ITS in EHRs. COPER uses Perceiver model and the concept of neural ordinary differential equations (ODEs) to learn the continuous time dynamics of patient state, i.e., continuity of input space and continuity of output space. The neural ODEs help COPER to generate regular time-series to feed to Perceiver model which has the capability to handle multi-modality large-scale inputs. To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset and carefully design experiments to study irregularity. The results are compared with the baselines which prove the efficacy of the proposed model.

Original publication




Conference paper

Publication Date