Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Antimicrobial resistance (AMR) in Enterobacterales is a global health threat. Capacity for individual-level surveillance remains limited in many countries, whilst population-level surveillance approaches could inform empiric antibiotic treatment guidelines. METHODS: In this exploratory study, a novel approach to population-level prediction of AMR in Enterobacterales clinical isolates using metagenomic (Illumina) profiling of pooled DNA extracts from human faecal samples was developed and tested. Taxonomic and AMR gene profiles were used to derive taxonomy-adjusted population-level AMR metrics. Bayesian modelling, and model comparison based on cross-validation, were used to evaluate the capacity of each metric to predict the number of resistant Enterobacterales invasive infections at a population-level, using available bloodstream/cerebrospinal fluid infection data. FINDINGS: Population metagenomes comprised samples from 177, 157, and 156 individuals in Kenya, the UK, and Cambodia, respectively, collected between September 2014 and April 2016. Clinical data from independent populations included 910, 3356 and 197 bacterial isolates from blood/cerebrospinal fluid infections in Kenya, the UK and Cambodia, respectively (samples collected between January 2010 and May 2017). Enterobacterales were common colonisers and pathogens, and faecal taxonomic/AMR gene distributions and proportions of antimicrobial-resistant Enterobacterales infections differed by setting. A model including terms reflecting the metagenomic abundance of the commonest clinical Enterobacterales species, and of AMR genes known to either increase the minimum inhibitory concentration (MIC) or confer clinically-relevant resistance, had a higher predictive performance in determining population-level resistance in clinical Enterobacterales isolates compared to models considering only AMR gene information, only taxonomic information, or an intercept-only baseline model (difference in expected log predictive density compared to best model, estimated using leave-one-out cross-validation: intercept-only model = -223 [95% credible interval (CI): -330,-116]; model considering only AMR gene information = -186 [95% CI: -281,-91]; model considering only taxonomic information = -151 [95% CI: -232,-69]). INTERPRETATION: Whilst our findings are exploratory and require validation, intermittent metagenomics of pooled samples could represent an effective approach for AMR surveillance and to predict population-level AMR in clinical isolates, complementary to ongoing development of laboratory infrastructures processing individual samples.

Original publication

DOI

10.1016/j.eclinm.2021.100910

Type

Journal article

Journal

EClinicalMedicine

Publication Date

06/2021

Volume

36

Keywords

Antimicrobial resistance surveillance, Clinical infection, Metagenomics