Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A research study led by the University of Oxford provides a transformational new insight into how antimicrobial resistance (AMR) emerges in patients with bacterial infections. The findings, published today in the journal Nature Communications, could help develop more effective interventions to prevent AMR infections developing in vulnerable patients.

Artistic illustration showing rod-shaped Pseudomonas aeruginosa bacteria inside the alveoli air sacs of the lungs. © Shutterstock

The study’s findings challenge the traditional view that people are generally infected by a single genetic clone (or ‘strain’) of pathogenic bacteria, and that resistance to antibiotic treatment evolves because of natural selection for new genetic mutations that occur during the infection. The results suggest that instead patients are commonly co-infected by multiple pathogen clones, with resistance emerging as a result of selection for pre-existing resistant clones, rather than new mutations. 

Lead researcher Professor Craig Maclean, from the University of Oxford’s Department of Biology, said: ‘The key finding of this study is that resistance evolves rapidly in patients colonized by diverse Pseudomonas aeruginosa populations due to selection for pre-existing resistant strains. The rate at which resistance evolves in patients varies widely across pathogens, and we speculate that high levels of within-host diversity may explain why some pathogens, such as Pseudomonas, rapidly adapt to antibiotic treatment.’

The researchers used a novel approach which studied changes in the genetic diversity and antibiotic resistance of a pathogenic bacteria species (Pseudomonas aeruginosa) collected from patients before and after antibiotic treatment. The samples were isolated from 35 intensive care unit (ICU) patients in 12 European hospitals. Pseudomonas aeruginosa is an opportunistic pathogen that is an important cause of hospital-acquired infection, particularly in immunocompromised and critically ill patients, and is thought to cause more than 550,000 deaths globally each year.

Read the full story on the University of Oxford website. 

Similar stories

New AI-led science initiative will help protect communities hit by climate change in East Africa

The United Nations World Food Programme (WFP), Oxford University Physics Department, IGAD Climate Prediction and Applications Centre (ICPAC), and various national forecasting and meteorology agencies across east Africa are joining forces to pioneer a transformative initiative that is revolutionising extreme weather forecasting and early warning systems in the region.