Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We report results from a recent laser pump–probe study into the ultrafast ring-opening dynamics of 1,2-dithiane. Following absorption of a 290 nm photon, the nuclear dynamics were probed as a function of pump–probe delay on the femtosecond timescale by strong-field ionisation with an 800 nm probe pulse, resulting in production of a range of atomic and molecular fragment ions. The time-dependent yields of atomic fragment ions reveal evidence of coherent nuclear wavepacket dynamics corresponding to the previously proposed ‘Newton's cradle’ motion of 1,2-dithiane, in which repeated ring opening, structural inversion, and ring closing occurs on a timescale of ∼400-500 fs. Based on surface-hopping trajectory simulations of the non-adiabatic dynamics, we are able to rationalise the observed time-dependent ion yields in terms of a geometry-dependent variation in ionisation energy for the photoexcited 1,2-dithiane molecule.

Original publication

DOI

10.1016/j.cplett.2025.142095

Type

Journal article

Journal

Chemical Physics Letters

Publication Date

16/07/2025

Volume

871