Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Expanding electric vehicle (EV) charging infrastructure is essential for transitioning to an electrified mobility system. With rising EV adoption rates, firms face increasing regulatory pressure to build up workplace charging facilities for their employees. However, the impact of EV charging loads on businesses' specific electricity consumption profiles remains largely unknown. Our study addresses this challenge by presenting a mathematical optimisation model, available via an open-source web application, that empowers business executives to manage energy consumption effectively, enabling them to assess peak loads, charging costs and carbon emissions specific to their power profiles and employee needs. Using real-world data from a global car manufacturer in South East England, UK, we demonstrate that smart charging strategies can reduce peak loads by 28% and decrease charging costs and emissions by 9% compared to convenience charging. Our methodology is widely applicable across industries and geographies, offering data-driven insights for planning EV workplace charging infrastructure.

Original publication

DOI

10.1038/s44333-025-00032-w

Type

Journal article

Journal

NPJ Sustain Mobil Transp

Publication Date

2025

Volume

2

Keywords

Energy management, Industry, Operational research