Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The use of saturated small-ring bridged hydrocarbons as bioisosteres for aromatic rings has become a popular tactic in drug discovery. Perhaps the best known of such hydrocarbons is bicyclo[1.1.1]pentane, for which the angle between the exit vectors of the bridgehead substituents is identical to that of a para-substituted arene (180°). The development of meta-arene (bio)isosteres is much less explored due to the challenge of identifying an accurate geometric mimic (substituent exit vector angle ~120°, dihedral angle ~0°). To address this, we recently reported straightforward access to bicyclo[3.1.1]heptanes (BCHeps), which exactly meet these geometric properties, via radical ring-opening reactions of [3.1.1]propellane. This required the development of a scalable synthesis of [3.1.1]propellane, as well as the implementation of various ring-opening reactions and derivatizations. Here we describe methodology for a multigram scale synthesis of [3.1.1]propellane in five steps from commercially available ethyl 4-chlorobutanoate, which proceeds in an overall yield of 26-37%. We also describe the functionalization of [3.1.1]propellane to three key classes of BCHep iodides by photocatalyzed-atom transfer radical addition reactions using 456 nm blue light. We further report protocols for the elaboration of these products to other useful derivatives, via iron-catalyzed Kumada coupling with aryl Grignard reagents and conversion of a pivalate ester to a carboxylic acid through hydrolysis/oxidation. The total times required to synthesize [3.1.1]propellane, the BCHep iodides and the BCHep carboxylic acid are ~53, 6-8 and 40 h, respectively, requiring an average level of synthetic chemistry expertise (for example, masters and/or graduate students).

Original publication

DOI

10.1038/s41596-024-01109-5

Type

Journal article

Journal

Nat Protoc

Publication Date

17/02/2025