Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cryo-electron tomography is a rapidly developing field for studying macromolecular complexes in their native environments and has the potential to revolutionize our understanding of protein function. However, fast and accurate identification of particles in cryo-tomograms is challenging and represents a significant bottleneck in downstream processes such as subtomogram averaging. Here, we present tomoCPT (Tomogram Centroid Prediction Tool), a transformer-based solution that reformulates particle detection as a centroid-prediction task using Gaussian labels. Our approach, which is built upon the SwinUNETR architecture, demonstrates superior performance compared with both conventional binary labelling strategies and template matching. We show that tomoCPT effectively generalizes to novel particle types through zero-shot inference and can be significantly enhanced through fine-tuning with limited data. The efficacy of tomoCPT is validated using three case studies: apoferritin, achieving a resolution of 3.0 Å compared with 3.3 Å using template matching, SARS-CoV-2 spike proteins on cell surfaces, yielding an 18.3 Å resolution map where template matching proved unsuccessful, and rubisco molecules within carboxysomes, reaching 8.0 Å resolution. These results demonstrate the ability of tomoCPT to handle varied scenarios, including densely packed environments and membrane-bound proteins. The implementation of the tool as a command-line program, coupled with its minimal data requirements for fine-tuning, makes it a practical solution for high-throughput cryo-ET data-processing workflows.

Original publication

DOI

10.1107/S2059798325000865

Type

Journal article

Journal

Acta Crystallogr D Struct Biol

Publication Date

01/02/2025

Volume

81

Pages

63 - 76

Keywords

cryo-ET, particle picking, subtomogram averaging, Cryoelectron Microscopy, Electron Microscope Tomography, Apoferritins, SARS-CoV-2, Spike Glycoprotein, Coronavirus, Humans, COVID-19, Imaging, Three-Dimensional, Image Processing, Computer-Assisted, Models, Molecular