Domestic Use of E-Cargo Bikes and Other E-Micromobility: Protocol for a Multi-Centre, Mixed Methods Study.
Philips I., Azzouz L., de Séjournet A., Anable J., Behrendt F., Cairns S., Cass N., Darking M., Glachant C., Heinen E., Marks N., Nelson T., Brand C.
Physical inactivity is a leading risk factor for non-communicable diseases. Climate change is now regarded as the biggest threat to global public health. Electric micromobility (e-micromobility, including e-bikes, e-cargo bikes, and e-scooters) has the potential to simultaneously increase people's overall physical activity while decreasing greenhouse gas emissions where it substitutes for motorised transport. The ELEVATE study aims to understand the impacts of e-micromobility, including identifying the people, places, and circumstances where they will be most beneficial in terms of improving people's health while also reducing mobility-related energy demand and carbon emissions. A complex mixed methods design collected detailed quantitative and qualitative data from multiple UK cities. First, nationally representative (n = 2000), city-wide (n = 400 for each of the three cities; total = 1200), and targeted study area surveys (n = 996) collected data on travel behaviour, levels of physical activity, vehicle ownership, and use, as well as attitudes towards e-micromobility. Then, to provide insights on an understudied type of e-micromobility, 49 households were recruited to take part in e-cargo bike one-month trials. Self-reported data from the participants were validated with objective data-using methods such as GPS trackers and smartwatches' recordings of routes and activities. CO2 impacts of e-micromobility use were also calculated. Participant interviews provided detailed information on preferences, expectations, experiences, barriers, and enablers of e-micromobility.