Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Accurately predicting hospital discharge events could help improve patient flow and the efficiency of healthcare delivery. However, using machine learning and diverse electronic health record (EHR) data for this task remains incompletely explored. METHODS: We used EHR data from February-2017 to January-2020 from Oxfordshire, UK to predict hospital discharges in the next 24 h. We fitted separate extreme gradient boosting models for elective and emergency admissions, trained on the first two years of data and tested on the final year of data. We examined individual-level and hospital-level model performance and evaluated the impact of training data size and recency, prediction time, and performance in subgroups. RESULTS: Our models achieve AUROCs of 0.87 and 0.86, AUPRCs of 0.66 and 0.64, and F1 scores of 0.61 and 0.59 for elective and emergency admissions, respectively. These models outperform a logistic regression model using the same features and are substantially better than a baseline logistic regression model with more limited features. Notably, the relative performance increase from adding additional features is greater than the increase from using a sophisticated model. Aggregating individual probabilities, daily total discharge estimates are accurate with mean absolute errors of 8.9% (elective) and 4.9% (emergency). The most informative predictors include antibiotic prescriptions, medications, and hospital capacity factors. Performance remains robust across patient subgroups and different training strategies, but is lower in patients with longer admissions and those who died in hospital. CONCLUSIONS: Our findings highlight the potential of machine learning in optimising hospital patient flow and facilitating patient care and recovery.

Original publication

DOI

10.1038/s43856-024-00673-x

Type

Journal article

Journal

Commun Med (Lond)

Publication Date

18/11/2024

Volume

4