Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this study, the biological properties of the replication-competent viruses, F-MuLVA, present in the anemia-inducing isolate of Friend leukemia virus complex (FV-A); and F-MuLVP, present in the polycythemia-inducing isolate of Friend leukemia virus complex (FV-P) have been examined. BALB/c mice infected as newborns with clonal isolates of F-MuLVA or F-MuLVP become anemic and show splenic enlargement characterized by an increased proportion of cells that resemble immature nucleated erythroid cells. In addition, the spleens of these F-MuLVA- or F-MuLVP-infected mice contain a markedly increased proportion of both erythropoietin-dependent erythroid progenitor cells and spectrin-containing erythroid cells. These results suggest that Friend murine leukemia virus (F-MuLV) by itself can induce an erythroleukemic transformation in newborn BALB/c mice similar to that induced by the anemia-inducing spleen focus-forming virus (SFFVA) in newborn or adult mice. Kinetic studies indicated that the alterations in hemopoietic cell populations induced by F-MuLVA or F-MuLVP in newborn BALB/c mice occurred more slowly than the rapid changes observed after infection with FV-A. In addition, adult BALB/c mice were fully susceptible to the erythroleukemic transformation induced by either SFFVA or SFFVP, whereas only newborn mice were susceptible to F-MuLV. Taken together, these results suggest that, although the replication-defective Friend spleen focus-forming viruses appear to be the major determinant of erythroleukemia induction in adults, the replication-competent helper F-MuLV also have erythroleukemic potential when assayed in newborn animals.

Original publication

DOI

10.1084/jem.151.6.1493

Type

Journal article

Journal

The Journal of experimental medicine

Publisher

Rockefeller University Press

Publication Date

01/06/1980

Volume

151

Pages

1493 - 1503