Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: To examine whether the cardiovascular effects of glucagon-like peptide-1 (GLP-1) receptor agonists are attenuated by concurrent sulfonylurea (SU) therapy in a post-hoc analysis of the Exenatide Study of Cardiovascular Event Lowering (EXSCEL). METHODS: We investigated whether SUs, as a class or by specific type, modulated the effects of once-weekly exenatide (EQW) on EXSCEL cardiovascular outcomes in intent-to-treat analyses of all trial participants, categorized as SU users or nonusers. Marginal structural models were used to evaluate whether there were differential EQW effects by SU category on major adverse cardiovascular events (MACE), depending on duration of SU use (6, 12, and 18 months). EQW-by-SU type interaction p-values and hazard ratios (95 % CIs) for EQW versus placebo for each baseline SU type (glibenclamide, gliclazide, glimepiride, other SUs) were calculated. RESULTS: Neither SU use nor baseline SU type modified the effect of EQW on time to MACE (pinteraction = 0.88 and 0.78, respectively), nor did individual SU types, including glibenclamide (a systemically wide-acting SU). CONCLUSIONS: SUs did not modulate the effect of EQW on cardiovascular outcomes, suggesting that SU treatment choices need not be altered to optimize the cardiovascular effects of GLP-1 receptor agonists in people with type 2 diabetes.

Original publication

DOI

10.1016/j.diabres.2024.111685

Type

Journal article

Journal

Diabetes Res Clin Pract

Publication Date

24/04/2024

Keywords

Cardiovascular outcomes, GLP-1 RAs, Sulfonylurea, Type 2 diabetes