Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The global spread of plasmid-borne carbapenem resistance is an ongoing public health challenge; however, the nature of such horizontal gene transfer events among complex bacterial communities remains poorly understood. We examined the in-situ transfer of the globally dominant New Delhi metallo-β-lactamase (NDM)-5-positive IncX3 plasmid (denoted pX3_NDM-5) in hospital wastewater to simulate a real-world, One Health antimicrobial resistance context. METHODS: For this transmission study, we tagged pX3_NDM-5 with the green fluorescent protein gene, gfp, using a CRISPR-based method and transferred the plasmid to a donor Escherichia coli strain. Bacteria were extracted from a hospital wastewater treatment plant (Fujian Provincial Maternity and Children's Hospital, Fuzhou, China) as the bacterial recipient community. We mixed this recipient community with the E coli donor strain carrying the gfp-tagged plasmid, both with and without sodium hypochlorite (NaClO) as an environmental stressor, and conducted several culture-based and culture-independent conjugation assays. The conjugation events were observed microscopically and quantified by fluorescence-activated cell sorting. We analysed the taxonomic composition of the sorted transconjugal pool by 16S rRNA gene amplicon sequencing and assessed the stability of the plasmid in the isolated transconjugants and its ability to transfer back to E coli. FINDINGS: We show that the plasmid pX3_NDM-5 has a broad host range and can transfer across various bacterial phyla, including between Gram-negative and Gram-positive bacteria. Although environmental stress with NaClO did not affect the overall plasmid transfer frequency, it reduced the breadth of the transconjugant pool. The taxonomic composition of the transconjugal pool was distinct from that of the recipient communities, and environmental stress modulated the permissiveness of some operational taxonomic units towards the acquisition of pX3_NDM-5. Notably, pX3_NDM-5 transconjugants included the Gram-positive pathogen Enterococcus faecalis, and the plasmid could subsequently be reconjugated back to E coli. These findings suggest that E faecalis could act as a natural shuttle vector for the wide dissemination of pX3_NDM-5 plasmids. INTERPRETATION: Our culture-independent conjugation model simulates natural environmental conditions and challenges the established theory that Gram-negative and Gram-positive bacteria rarely exchange clinically important plasmids. The data show that plasmids disseminate more widely across genera and phyla than previously thought. These findings have substantial implications when considering the spread of antimicrobial resistance across One Health sectors. FUNDING: The Laboratory of Lingnan Modern Agriculture Project, the National Natural Science Foundation of China, the Natural Science Foundation of Fujian Province of China, and the Outstanding Young Research Talents Program of Fujian Agriculture and Forestry University.

Original publication




Journal article


Lancet Microbe

Publication Date