Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Copper (Cu), an essential trace mineral regulating multiple actions of inflammation and oxidative stress, has been implicated in risk for preterm birth (PTB). OBJECTIVES: This study aimed to determine the association of maternal Cu concentration during pregnancy with PTB risk and gestational duration in a large multicohort study including diverse populations. METHODS: Maternal plasma or serum samples of 10,449 singleton live births were obtained from 18 geographically diverse study cohorts. Maternal Cu concentrations were determined using inductively coupled plasma mass spectrometry. The associations of maternal Cu with PTB and gestational duration were analyzed using logistic and linear regressions for each cohort. The estimates were then combined using meta-analysis. Associations between maternal Cu and acute-phase reactants (APRs) and infection status were analyzed in 1239 samples from the Malawi cohort. RESULTS: The maternal prenatal Cu concentration in our study samples followed normal distribution with mean of 1.92 μg/mL and standard deviation of 0.43 μg/mL, and Cu concentrations increased with gestational age up to 20 wk. The random-effect meta-analysis across 18 cohorts revealed that 1 μg/mL increase in maternal Cu concentration was associated with higher risk of PTB with odds ratio of 1.30 (95% confidence interval [CI]: 1.08, 1.57) and shorter gestational duration of 1.64 d (95% CI: 0.56, 2.73). In the Malawi cohort, higher maternal Cu concentration, concentrations of multiple APRs, and infections (malaria and HIV) were correlated and associated with greater risk of PTB and shorter gestational duration. CONCLUSIONS: Our study supports robust negative association between maternal Cu and gestational duration and positive association with risk for PTB. Cu concentration was strongly correlated with APRs and infection status suggesting its potential role in inflammation, a pathway implicated in the mechanisms of PTB. Therefore, maternal Cu could be used as potential marker of integrated inflammatory pathways during pregnancy and risk for PTB.

Original publication

DOI

10.1016/j.ajcnut.2023.10.011

Type

Journal article

Journal

Am J Clin Nutr

Publication Date

01/2024

Volume

119

Pages

221 - 231

Keywords

acute-phase reactants, copper, gestational duration, inflammation, low- and middle-income countries, nutrition, pregnancy, preterm birth, Pregnancy, Female, Humans, Infant, Newborn, Premature Birth, Copper, Gestational Age, Live Birth, Inflammation, Risk Factors