Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The effects of ivermectin (endectocide) on mosquito survival make it a potential new malaria vector control tool. The drug can be administered to mosquito disease vectors through blood hosts that include humans and livestock. Its increased use may cause contamination of larval habitats, either directly through livestock excreta or indirectly through leaching or run-off from contaminated soil, albeit in sublethal doses. However, the effects of such exposure on immature stages and the subsequent adults that emerge are poorly understood. This study was undertaken to evaluate the impact of ivermectin exposure on Anopheles gambiae s.s. larvae and its effects on fitness and susceptibility to ivermectin in the emerging adults. METHODS: Laboratory-reared An. gambiae s.s. (Kilifi strain) larvae were exposed to five different ivermectin concentrations; 0, 0.00001, 0.0001, 0.001, and 0.01 ppm, and larval survival was monitored to determine the appropriate sub-lethal dose. Concentrations with survival > 50% (0.00001 and 0.0001 ppm) were selected and used as the sub-lethal doses. The fecundity, fertility, and susceptibility to ivermectin of adults emerging after larval exposure to the sub-lethal doses were examined. RESULTS: Overall, exposure of An. gambiae s.s. aquatic stages to ivermectin caused a dose-dependent reduction in larval survival irrespective of the stage at which the larvae were exposed. Exposure to ivermectin in the larval stage did not have an effect on either the number of eggs laid or the hatch rate. However, exposure of first/second-instar larvae to 0.0001 ppm and third/fourth-instar larvae to 0.001 ppm of ivermectin reduced the time taken to oviposition. Additionally, exposure to ivermectin in the larval stage did not affect susceptibility of the emerging adults to the drug. CONCLUSIONS: This study shows that contamination of larval habitats with ivermectin affects An. gambiae s.s. larval survival and could potentially have an impact on public health. However, there are no carry-over effects on the fecundity, fertility, and susceptibility of the emerging adults to ivermectin. In addition, this study shows that environmental exposure to ivermectin in the larval habitats is unlikely to compromise the efficacy of ivermectin in the emerging adults.

Original publication

DOI

10.1186/s13071-023-05888-w

Type

Journal article

Journal

Parasit Vectors

Publication Date

21/08/2023

Volume

16

Keywords

Adult fitness, Anopheles gambiae s.s., Ivermectin, Mosquito larvae, Adult, Humans, Animals, Female, Anopheles, Ivermectin, Malaria, Mosquito Vectors, Larva, Livestock