Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our objective is to develop a model for the prediction of minimum fetal blood pressure (FBP) during fetal heart rate (FHR) decelerations. Experimental data from umbilical occlusions in near-term fetal sheep (2698 occlusions from 57 near-term lambs) were used to train a convolutional neural network. This model was then used to estimate FBP for decelerations extracted from the final 90 min of 53,445 human FHR signals collected using cardiotocography. Minimum sheep FBP was predicted with a mean absolute error of 6.7 mmHg (25th, 50th, 75th percentiles of 2.3, 5.2, 9.7 mmHg), mean absolute percentage errors of 17.3% (5.5%, 12.5%, 23.9%) and a coefficient of determination R2=0.36. While the model was unable to clearly predict severe compromise at birth in humans, there is positive evidence that such a model could predict human FBP with further development. The neural network is capable of predicting FBP for many of the sheep decelerations accurately but performed far from satisfactory at identifying FHR segments that correspond to the highest or lowest minimum FBP. These results indicate that with further work and a larger, more variable training dataset, the model could achieve higher accuracy.

Original publication

DOI

10.3390/bioengineering10070775

Type

Journal article

Journal

Bioengineering

Publisher

MDPI AG

Publication Date

28/06/2023

Volume

10

Pages

775 - 775