Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

KDM6A (UTX) and KDM6B (JMJD3) are human non-heme Fe(II) and 2-oxoglutarate (2OG) dependent JmjC oxygenases that catalyze the demethylation of trimethylated lysine 27 in the N-terminal tail of histone H3, a post-translational modification that regulates transcription. A Combined Quantum Mechanics/ Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) study on the catalytic mechanism of KDM6A/B reveals that the transition state for the rate-limiting hydrogen atom transfer (HAT) reaction in KDM6A catalysis is stabilized by polar (Asn217) and aromatic (Trp369)/non-polar (Pro274) residues in contrast to KDM4, KDM6B and KDM7 demethylases where charged residues (Glu, Arg, Asp) are involved. KDM6A employs both σ- and π-electron transfer pathways for HAT, whereas KDM6B employs the σ-electron pathway. Differences in hydrogen bonding of the Fe-chelating Glu252(KDM6B) contribute to the lower energy barriers in KDM6B vs. KDM6A. The study reveals a dependence of the activation barrier of the rebound hydroxylation on the Fe-O-C angle in the transition state of KDM6A. Anti-correlation of the Zn-binding domain with the active site residues is a key factor distinguishing KDM6A/B from KDM7/4s. The results reveal the importance of communication between the Fe center, second coordination sphere, and long-range interactions in catalysis by KDMs and, by implication, other 2OG oxygenases.

Original publication

DOI

10.1002/chem.202301305

Type

Journal article

Journal

Chemistry

Publication Date

12/09/2023

Volume

29

Keywords

KDM6, QM/MM, histone demethylases, long-range, molecular dynamics, second coordination sphere, Humans, Histone Demethylases, Histones, Jumonji Domain-Containing Histone Demethylases, Oxygenases, Catalysis, Ferrous Compounds