Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Diagnostic assays for various infectious diseases, including COVID-19, have been challenged for their utility as standalone point-of-care diagnostic tests due to suboptimal accuracy, complexity, high cost or long turnaround times for results. It is therefore critical to optimise their use to meet the needs of users. We used a simulation approach to estimate diagnostic outcomes, number of tests required and average turnaround time of using two-test algorithms compared with singular testing; the two tests were reverse transcription polymerase chain reaction (RT-PCR) and an antigen-based rapid diagnostic test (Ag-RDT). A web-based application of the model was developed to visualise and compare diagnostic outcomes for different disease prevalence and test performance characteristics (sensitivity and specificity). We tested the model using hypothetical prevalence data for COVID-19, representing low- and high-prevalence contexts and performance characteristics of RT-PCR and Ag-RDTs. The two-test algorithm when RT-PCR was applied to samples negative by Ag-RDT predicted gains in sensitivity of 27% and 7%, respectively, compared with Ag-RDT and RT-PCR alone. Similarly, when RT-PCR was applied to samples positive by Ag-RDT, specificity gains of 2.9% and 1.9%, respectively, were predicted. The algorithm using Ag-RDT followed by RT-PCR as a confirmatory test for positive patients limited the requirement of RT-PCR testing resources to 16,400 and 3,034 tests when testing a population of 100,000 with an infection prevalence of 20% and 0.05%, respectively. A two-test algorithm comprising a rapid screening test followed by confirmatory laboratory testing can reduce false positive rate, produce rapid results and conserve laboratory resources, but can lead to large number of missed cases in high prevalence setting. The web application of the model can identify the best testing strategies, tailored to specific use cases and we also present some examples how it was used as part of the Access to Covid-19 Tools (ACT) Accelerator Diagnostics Pillar.

Original publication

DOI

10.1371/journal.pgph.0000293

Type

Journal article

Journal

PLOS Glob Public Health

Publication Date

2022

Volume

2