Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the first wave of artificial intelligence (AI), rule-based expert systems were developed, with modest success, to help generalists who lacked expertise in a specific domain. The second wave of AI, originally called artificial neural networks but now described as machine learning, began to have an impact with multilayer networks in the 1980s. Deep learning, which enables automated feature discovery, has enjoyed spectacular success in several medical disciplines, including cardiology, from automated image analysis to the identification of the electrocardiographic signature of atrial fibrillation during sinus rhythm. Machine learning is now embedded within the NHS Long-Term Plan in England, but its widespread adoption may be limited by the "black-box" nature of deep neural networks.

Type

Journal article

Journal

Heart and Metabolism

Publication Date

01/01/2020

Pages

8 - 11