Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abdominal hernias are common and characterised by the abnormal protrusion of a viscus through the wall of the abdominal cavity. The global incidence is 18.5 million annually and there are limited non-surgical treatments. To improve understanding of common hernia aetiopathology, we performed a six-stage genome-wide association study (GWAS) of 62,637 UK Biobank participants with either single or multiple hernia phenotypes including inguinal, femoral, umbilical and hiatus hernia. Additionally, we performed multivariable meta-analysis with metaUSAT, to allow integration of summary data across traits to generate combined effect estimates. On individual hernia analysis, we identified 3404 variants across 38 genome-wide significant (p < 5×10-8) loci of which 11 are previously unreported. Robust evidence for five shared susceptibility loci was discovered: ZC3H11B, EFEMP1, MHC region, WT1 and CALD1. Combined hernia phenotype analyses with additional multivariable meta-analysis of summary statistics in metaUSAT revealed 28 independent (seven previously unreported) shared susceptibility loci. These clustered in functional categories related to connective tissue and elastic fibre homeostasis. Weighted genetic risk scores also correlated with disease severity suggesting a phenotypic-genotypic severity correlation, an important finding to inform future personalised therapeutic approaches to hernia.

Original publication




Journal article


PLoS One

Publication Date





Humans, Genome-Wide Association Study, Hernia, Abdominal, Phenotype, Risk Factors, Genome, Genetic Predisposition to Disease, Polymorphism, Single Nucleotide, Extracellular Matrix Proteins