Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Aerosol particles play an important role in the climate system by absorbing and scattering radiation and influencing cloud properties. They are also one of the biggest sources of uncertainty for climate modeling. Many climate models do not include aerosols in sufficient detail due to computational constraints. To represent key processes, aerosol microphysical properties and processes have to be accounted for. This is done in the ECHAM-HAM (European Center for Medium-Range Weather Forecast-Hamburg-Hamburg) global climate aerosol model using the M7 microphysics, but high computational costs make it very expensive to run with finer resolution or for a longer time. We aim to use machine learning to emulate the microphysics model at sufficient accuracy and reduce the computational cost by being fast at inference time. The original M7 model is used to generate data of input–output pairs to train a neural network (NN) on it. We are able to learn the variables’ tendencies achieving an average $ {R}^2 $ score of 77.1%. We further explore methods to inform and constrain the NN with physical knowledge to reduce mass violation and enforce mass positivity. On a Graphics processing unit (GPU), we achieve a speed-up of up to over 64 times faster when compared to the original model.

Original publication




Journal article


Environmental Data Science


Cambridge University Press (CUP)

Publication Date