Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cefepime-enmetazobactam is a novel β-lactam-β-lactamase inhibitor combination with broad-spectrum antimicrobial activity against a range of multidrug-resistant Enterobacteriaceae This agent is being developed for a range of serious hospital infections. An understanding of the extent of partitioning of β-lactam-β-lactamase inhibitor combinations into the human lung is required to better understand the potential role of cefepime-enmetazobactam for the treatment of nosocomial pneumonia. A total of 20 healthy volunteers were used to study the intrapulmonary pharmacokinetics of a regimen of 2 g cefepime-1 g enmetazobactam every 8 h intravenously (2 g/1 g q8h i.v.). Each volunteer contributed multiple plasma samples and a single epithelial lining fluid (ELF) sample, obtained by bronchoalveolar lavage. Concentrations of cefepime and enmetazobactam were quantified using liquid chromatography-tandem mass spectrometry. The pharmacokinetic data were modeled using a population methodology, and Monte Carlo simulations were performed to assess the attainment of pharmacodynamic targets defined in preclinical models. The concentration-time profiles of both agents in plasma and ELF were similar. The mean ± standard deviation percentage of partitioning of total drug concentrations of cefepime and enmetazobactam between plasma and ELF was 60.59% ± 28.62% and 53.03% ± 21.05%, respectively. Using pharmacodynamic targets for cefepime of greater than the MIC and free enmetazobactam concentrations of >2 mg/liter in ELF of 20% of the dosing interval, a regimen of cefepime-enmetazobactam of 2 g/0.5 g q8h i.v. infused over 2 h resulted in a probability of target attainment of ≥90% for Enterobacteriaceae with cefepime-enmetazobactam MICs of ≤8 mg/liter. This result provides a rationale to further consider cefepime-enmetazobactam for the treatment of nosocomial pneumonia caused by multidrug-resistant Enterobacteriaceae.

Original publication




Journal article


Antimicrob Agents Chemother

Publication Date





ESBL, Monte Carlo simulation, beta-lactams, cefepime, enmetazobactam, pneumonia, population pharmacokinetics, Anti-Bacterial Agents, Azabicyclo Compounds, Cefepime, Cephalosporins, Cross Infection, Healthcare-Associated Pneumonia, Humans, Microbial Sensitivity Tests, Monte Carlo Method, Triazoles