Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Large routinely collected data such as electronic health records (EHRs) are increasingly used in research, but the statistical methods and processes used to check such data for temporal data quality issues have not moved beyond manual, ad hoc production and visual inspection of graphs. With the prospect of EHR data being used for disease surveillance via automated pipelines and public-facing dashboards, automation of data quality checks will become increasingly valuable. FINDINGS: We generated 5,526 time series from 8 different EHR datasets and engaged >2,000 citizen-science volunteers to label the locations of all suspicious-looking change points in the resulting graphs. Consensus labels were produced using density-based clustering with noise, with validation conducted using 956 images containing labels produced by an experienced data scientist. Parameter tuning was done against 670 images and performance calculated against 286 images, resulting in a final sensitivity of 80.4% (95% CI, 77.1%-83.3%), specificity of 99.8% (99.7%-99.8%), positive predictive value of 84.5% (81.4%-87.2%), and negative predictive value of 99.7% (99.6%-99.7%). In total, 12,745 change points were found within 3,687 of the time series. CONCLUSIONS: This large collection of labelled EHR time series can be used to validate automated methods for change point detection in real-world settings, encouraging the development of methods that can successfully be applied in practice. It is particularly valuable since change point detection methods are typically validated using synthetic data, so their performance in real-world settings cannot be assumed to be comparable. While the dataset focusses on EHRs and data quality, it should also be applicable in other fields.

Original publication

DOI

10.1093/gigascience/giad060

Type

Journal article

Journal

Gigascience

Publication Date

28/12/2022

Volume

12

Keywords

anomalies, change point detection, data quality, time series, Humans, Time Factors, Crowdsourcing, Hiccup, Electronic Health Records