Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Environmental stochasticity is a key determinant of population viability. Decades of work exploring how environmental stochasticity influences population dynamics have highlighted the ability of some natural populations to limit the negative effects of environmental stochasticity, one of the strategies being demographic buffering. Whilst various methods exist to quantify demographic buffering, we still do not know which environmental components and demographic mechanisms are most responsible for the demographic buffering observed in natural populations. Here, we introduce a framework to explore the relative impacts of environmental components (i.e., temporal autocorrelation and variance in demographic rates) on demographic buffering and the demographic mechanisms that underly these impacts (i.e., population structure and demographic rates). Using integral projection models, we show how demographic buffering is more sensitive to environmental variance relative to environmental autocorrelation. In addition, environmental autocorrelation and variance impact demographic buffering through distinct demographic mechanisms-i.e., population structure and demographic rates, respectively.

Original publication

DOI

10.1111/ele.70066

Type

Journal article

Journal

Ecol Lett

Publication Date

02/2025

Volume

28

Keywords

environmental variability, integral projection models (IPMs), life history strategies, stochastic demography, Population Dynamics, Models, Biological, Demography, Environment, Stochastic Processes, Ecosystem, Animals