Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

2-Oxoglutarate (2OG) dependent Nε-methyl lysine demethylases (JmjC-KDMs) regulate eukaryotic transcription. We report studies showing that isolated forms of all human KDM4 and KDM5 JmjC enzymes catalyse demethylation of N-methylated Arg-3 of histone H2a. Unexpectedly, the results reveal that KDM4E and, less efficiently, KDM4D catalyse C-4 hydroxylation of Arg-20 of H2a on peptides, recombinant H2a, and calf histone extracts, including when the Arg-20 guanidino group is N-methylated. Combined with previous observations, our biochemical results highlight the importance of sequence context in determining the relative efficiencies of lysine and arginine demethylation reactions catalysed by KDM4s and KDM5s. At least in some cases changes in sequence can also enable a different JmjC reaction mode, such as C-4 arginine hydroxylation instead of demethylation. Further work is thus required to define the full scope of JmjC catalysed reactions in cells.

Original publication

DOI

10.1038/s42003-024-07183-5

Type

Journal article

Journal

Communications Biology

Publisher

Nature Research

Publication Date

27/11/2024

Volume

7