Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In obstetric sonography, the quality of acquisition of ultrasound scan video is crucial for accurate (manual or automated) biometric measurement and fetal health assessment. However, the nature of fetal ultrasound involves free-hand probe manipulation and this can make it challenging to capture high-quality videos for fetal biometry, especially for the less-experienced sonographer. Manually checking the quality of acquired videos would be time-consuming, subjective and requires a comprehensive understanding of fetal anatomy. Thus, it would be advantageous to develop an automatic quality assessment method to support video standardization and improve diagnostic accuracy of video-based analysis. In this paper, we propose a general and purely data-driven video-based quality assessment framework which directly learns a distinguishable feature representation from high-quality ultrasound videos alone, without anatomical annotations. Our solution effectively utilizes both spatial and temporal information of ultrasound videos. The spatio-temporal representation is learned by a bi-directional reconstruction between the video space and the feature space, enhanced by a key-query memory module proposed in the feature space. To further improve performance, two additional modalities are introduced in training which are the sonographer gaze and optical flow derived from the video. Two different clinical quality assessment tasks in fetal ultrasound are considered in our experiments, i.e., measurement of the fetal head circumference and cerebellar diameter; in both of these, low-quality videos are detected by the large reconstruction error in the feature space. Extensive experimental evaluation demonstrates the merits of our approach.

Original publication

DOI

10.1016/j.media.2023.102977

Type

Journal article

Journal

Med Image Anal

Publication Date

12/2023

Volume

90

Keywords

Clinical quality assessment, Fetal ultrasound, Multi-modality data, Pregnancy, Female, Humans, Ultrasonography, Prenatal, Fetus, Ultrasonography